Posts

Showing posts from April 20, 2020

Why does 0! is equal to 1 ?

When we have to calculate the factorial of a non-negative integer n, then it is denoted by n!, is the product of all positive integer less than or equal to n . so, 𝑛 ! = 𝑛 βˆ— ( 𝑛 βˆ’ 1 ) βˆ— ( 𝑛 βˆ’ 2 ) βˆ— ( 𝑛 βˆ’ 3 ) βˆ— . . .3 βˆ— 2 βˆ— 1 n ! = n βˆ— ( n βˆ’ 1 ) βˆ— ( n βˆ’ 2 ) βˆ— ( n βˆ’ 3 ) βˆ— . . .3 βˆ— 2 βˆ— 1 However, the recursive definition of factorial is of more use in this proof. 𝑛 ! = { 1 𝑛 βˆ— ( 𝑛 βˆ’ 1 ) ! 𝑛 = 0 𝑛 > 0 n ! = { 1 n = 0 n βˆ— ( n βˆ’ 1 ) ! n > 0 The recursive definition of  Factorial  leads to one interesting way of expressing factorial numbers . 𝑛 ! = ( 𝑛 + 1 ) ! ( 𝑛 + 1 ) n ! = ( n + 1 ) ! ( n + 1 ) This is valid since, as we expand  ( 𝑛 + 1 ) ! ( n + 1 ) !  from the recursive definition, we can cancel  ( 𝑛 + 1 ) ( n + 1 )  term from both numerator and denominator to get  𝑛 ! n ! . Or we can even calculate factorial in the numerator and then evaluate the division For example, 5 ! = 6 ! 6 = 720 6 = 4 ! = 5 ! 5 = 120 5 ...