If gcd(a,b)=1 ,prove that gcd (a^2,b^2)=1.
Let :
au+bv=1
au=1-bv ............................(i)
Squaring both sides of equation (i) :
we get,
(au)^2=(1-bv)^2 ........................(ii)
a^2(u^2) + b(2v-bv^2)= 1
so,
gcd(a^2,b)=1
=> (a^2)K1 + bK2 =1
=> (bK2)^2=(1-a^2K1)^2
=> b^2{(K2)^2}=1+a^4(K1)^2 -2(a^2)(K1)
=> b^2(K2)^2 +a^2(2K1-(a^2)(K1)^2)=1
=> gcd(a^2,b^2)=1 {Proved}
au+bv=1
au=1-bv ............................(i)
Squaring both sides of equation (i) :
we get,
(au)^2=(1-bv)^2 ........................(ii)
a^2(u^2) + b(2v-bv^2)= 1
so,
gcd(a^2,b)=1
=> (a^2)K1 + bK2 =1
=> (bK2)^2=(1-a^2K1)^2
=> b^2{(K2)^2}=1+a^4(K1)^2 -2(a^2)(K1)
=> b^2(K2)^2 +a^2(2K1-(a^2)(K1)^2)=1
=> gcd(a^2,b^2)=1 {Proved}
Comments